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Note: Each question carries 10 marks.

1. Fort € R, f: IR — C continuous define (p(t)f)(x) = f(x —t). Which
of the following subspaces are p(IR)- invariant?

a) the subspace of polynomials.

b) the subspace of even function.
¢) the space of the functions cosz, cox2z, ..., cosnz.
2. a) For an irreducible character x of a finite group G # {1}, detrmine
@ 2 z(9).
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b) Find the character of the representation of the group S,, on an n-
dimensional vector space V with basis {ey,...e,} defined by o - e; =
€o(4) for o € S5,,.

3. Let V be the C vector space of homogeneous polynomials of degree n
in 2 variables x,y. Consider the representation of SU(2) on V' by
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By looking at the restriction of p to the subgroup of diagonal matrices
in SU(2), prove that p is an irreducible representation of SU(2)

4. For a n x n matrix X, prove that
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=X
dt
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5. Find a homomorphism 6 from SU(2) to SU(3) with kernel ={+I}.

6. Show that L?(S!) decomposes into the Hilbert space direct sum of
finite-dimensional irreducible representations of S?.



